Weighted uniform consistency of kernel density estimators with general bandwidth sequences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Uniform Consistency of Kernel Density Estimators

Let fn denote a kernel density estimator of a continuous density f in d dimensions, bounded and positive. Let (t) be a positive continuous function such that ‖ f β‖∞ < ∞ for some 0 < β < 1/2. Under natural smoothness conditions, necessary and sufficient conditions for the sequence √ nhn 2| loghn | ‖ (t)(fn(t)−Efn(t))‖∞ to be stochastically bounded and to converge a.s. to a constant are obtained...

متن کامل

UNIFORM IN BANDWIDTH CONSISTENCY OF KERNEL - TYPE FUNCTION ESTIMATORS By

We introduce a general method to prove uniform in bandwidth consistency of kernel-type function estimators. Examples include the kernel density estimator, the Nadaraya–Watson regression estimator and the conditional empirical process. Our results may be useful to establish uniform consistency of data-driven bandwidth kernel-type function estimators.

متن کامل

Consistency of Robust Kernel Density Estimators

The kernel density estimator (KDE) based on a radial positive-semidefinite kernel may be viewed as a sample mean in a reproducing kernel Hilbert space. This mean can be viewed as the solution of a least squares problem in that space. Replacing the squared loss with a robust loss yields a robust kernel density estimator (RKDE). Previous work has shown that RKDEs are weighted kernel density estim...

متن کامل

Uniform in Bandwidth Consistency of Kernel Regression Estimators at a Fixed Point

We consider pointwise consistency properties of kernel regression function type estimators where the bandwidth sequence in not necessarily deterministic. In some recent papers uniform convergence rates over compact sets have been derived for such estimators via empirical process theory. We now show that it is possible to get optimal results in the pointwise case as well. The main new tool for t...

متن کامل

Nonparametric density deconvolution by weighted kernel estimators

JSM, Denver, 4 August 2008 – 3 / 23 We observe a univariate random sample Y1, . . . , Yn from a density g, where Yi = Xi + Zi (i = 1, . . . , n). Here X1, . . . , Xn are independent and identically distributed with unknown continuous density f , and the measurement errors Z1, . . . , Zn form a random sample from the continuous density η which we assume to be known. Our goal is to obtain a nonpa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2006

ISSN: 1083-6489

DOI: 10.1214/ejp.v11-354